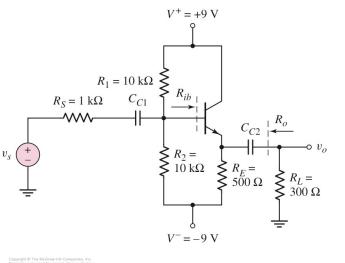


- [1] The transistor parameters for the circuit in Figure 1 are $\beta = 180$ and $V_A = \infty$.
 - (a) Find I_{CQ} and V_{CEQ} .

(b) Calculate the small-signal voltage gain.

(c) Determine the input and output resistances R_{ib} and R_{o} .



Solution:

(a) For dc analysis, the capacitors *CC*1 and *CC*2 act as *open circuit*.

$$V_{TH} = \frac{R_2}{R_1 + R_2} \left(V^+ - V^- \right) + V^- = \left(\frac{10}{10 + 10} \right) (18) + (-9) = 0 \text{ (V)}$$

$$R_{TH} = R_1 || R_2 = \frac{(10)(10)}{10 + 10} = 5.0 \text{ (k}\Omega)$$

$$I_{BQ} = \frac{V_{TH} - V_{BE(\text{on})} - V^-}{R_{TH} + (1 + \beta)R_E} = \frac{0 - 0.7 - (-9)}{5 + (181)(0.5)} = 86.91 \text{ (}\mu\text{A}\text{)}$$

$$I_{CQ} = \beta I_{BQ} = 15.644 \text{ (mA)}$$

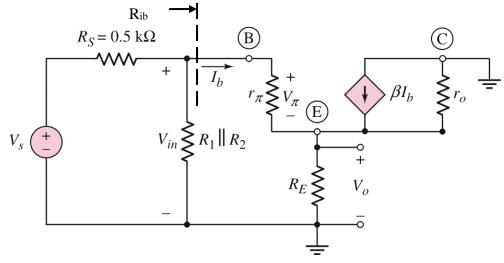
$$I_{EQ} = (1 + \beta) I_{BQ} = 15.731 \text{ (mA)}$$

$$V_{CEQ} = V^+ - V^- - I_{EQ}R_E = 9 - (-9) - (15.731)(0.5) = 10.13 \text{ (V)}$$

(b) The small-signal parameters are:

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}} = \frac{(180)(0.026)}{15.644} = 0.299 \text{ (k}\Omega)$$
$$g_m = \frac{I_{CQ}}{V_T} = \frac{15.644}{0.026} = 601.692 \text{ (mA/V)}$$
$$r_o = \frac{V_A}{I_{CQ}} = \infty$$

The small-signal ac equivalent circuit becomes:



Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

$$\begin{aligned} v_o &= (1+\beta)i_b \left(R_E \parallel R_L\right) \\ \Rightarrow \frac{v_o}{i_b} &= (1+\beta)(R_E \parallel R_L) = (181)(0.1875) = 33.9375 \\ v_b &= V_\pi + v_o = i_b r_\pi + (1+\beta)i_b \left(R_E \parallel R_L\right) \\ \Rightarrow \frac{v_b}{i_b} &= R_{ib} = r_\pi + (1+\beta)(R_E \parallel R_L) = 0.299 + 33.9375 = 34.2365 \\ v_b &= \frac{R_{ib} \parallel R_1 \parallel R_2}{R_S + R_{ib} \parallel R_1 \parallel R_2} v_S \\ \Rightarrow \frac{v_b}{v_s} &= \frac{R_{ib} \parallel R_1 \parallel R_2}{R_S + R_{ib} \parallel R_1 \parallel R_2} = \frac{4.3628}{1+4.3628} = 0.8135 \\ \frac{v_o}{v_s} &= \frac{v_o}{i_b} \times \frac{i_b}{v_b} \times \frac{v_b}{v_s} \\ &= (1+\beta)(R_E \parallel R_L) \times \frac{1}{R_{ib}} \times \frac{R_{ib} \parallel R_1 \parallel R_2}{R_S + R_{ib} \parallel R_1 \parallel R_2} \\ &= \frac{(1+\beta)(R_E \parallel R_L)}{R_{ib}} \left(\frac{R_{ib} \parallel R_1 \parallel R_2}{R_S + R_{ib} \parallel R_1 \parallel R_2} \right) \end{aligned}$$

$$= (33.9375) \left(\frac{1}{34.2365}\right) (0.8135) = 0.8064$$

(c) The input resistance R_{ib} is:

$$R_{ib} = r_{\pi} + (1 + \beta) (R_E || R_L)$$

= 0.299 + 33.9375 = 34.24 (k\Omega)

To calculate the output resistance R_0 , the signal source vs is short-circuited and the following equations can be written by KCL at node v_0 and node v_b :

$$v_{b} = v_{o} + r_{\pi} i_{b}$$

$$\frac{v_{b}}{R_{s} || R_{1} || R_{2}} + i_{b} = 0 \text{ (KCL at node } v_{b})$$

$$\frac{v_{o} + r_{\pi} i_{b}}{R_{s} || R_{1} || R_{2}} + i_{b} = 0 \Rightarrow \frac{v_{o}}{i_{b}} = -(r_{\pi} + R_{s} || R_{1} || R_{2})$$

$$i_{o} + (1 + \beta) i_{b} = \frac{v_{o}}{R_{E}} \text{ (KCL at node } v_{o})$$

$$i_{o} - (1 + \beta) \left(\frac{v_{o}}{r_{\pi} + R_{s} || R_{1} || R_{2}}\right) = \frac{v_{o}}{R_{E}}$$

$$\Rightarrow \frac{v_{o}}{i_{o}} = R_{o} = R_{E} || \left(\frac{r_{\pi} + R_{s} || R_{1} || R_{2}}{1 + \beta}\right) = 6.18 \text{ (}\Omega\text{)}$$

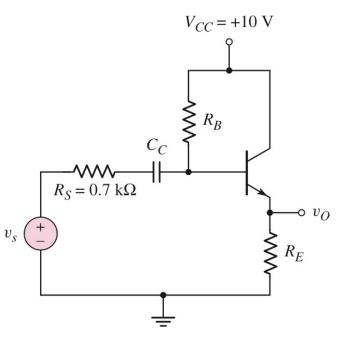
[2] For the transistor in Figure 2, the parameters are $\beta = 100$ and $V_A = \infty$.

(a) Design the circuit such that $I_{EQ} = 1 \text{ mA}$ and the Q-point is in the center of the dc load line.

(b) If the peak-to-peak sinusoidal output voltage is 4 V, determine the peak-to-peak sinusoidal signals at the base of the transistor and the peak-to-peak value of vs.

(c) If the load resistor $R_L = 1 \text{ k}\Omega$ is connected to the output through a coupling capacitor, determine the peak-to-peak value in the

output voltage, assuming vs is equal to the value determined in part (b).



Benha University Faculty of Engineering at Shoubra Electrical Engineering Department

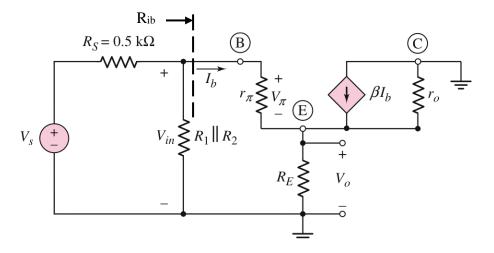
Solid State Electronic Devices 3rd Term – Level 1 / Credit H Sheet 06 Sol. - (Fall 2017)

Solution:

(a) For dc analysis, the capacitor *CC* acts as *open circuit*.

$$\begin{split} V_{CC} &= I_{BQ}R_B + V_{BE(00)} + I_{EQ}R_E \\ &= \left(\frac{R_B}{1+\beta} + R_E\right)I_{EQ} + V_{BE(00)} \\ \frac{R_B}{101} + R_E &= \frac{V_{CC} - V_{BE(00)}}{I_{EQ}} = \frac{10-0.7}{1} = 9.3 \ (\text{k}\Omega) \qquad \dots(1) \\ V_{CC} &= V_{CEQ} + I_{EQ}R_E \ (V_{CEQ} = \frac{V_{CC}}{2} \text{ for } Q \text{ -point is in the center of the dc load line}) \\ 10 &= 5 + (1)R_E \\ R_E &= 5 \ (\text{k}\Omega) \qquad \dots(2) \\ &\Rightarrow R_B = (101)(9.3 - R_E) = 434.3 \ (\text{k}\Omega) \\ I_{CQ} &= \left(\frac{\beta}{1+\beta}\right)I_{EQ} = \left(\frac{100}{101}\right)(1) = 0.990 \ (\text{mA}) \\ r_{\pi} &= \frac{\beta V_T}{I_{CQ}} = \frac{(100)(0.026)}{0.990} = 2.6263 \ (\text{k}\Omega) \\ g_m &= \frac{I_{CQ}}{V_T} = \frac{0.990}{0.026} = 38.0769 \ (\text{mA/V}) \\ r_o &= \frac{V_A}{I_{CQ}} = \infty \end{split}$$

(b) The small-signal ac equivalent circuit is given by:



$$\begin{aligned} v_o &= (1+\beta)R_E i_b \\ \Rightarrow \frac{v_o}{i_b} &= (1+\beta)R_E = (101)(5) = 505 \\ v_b &= V_\pi + v_o = i_b r_\pi + (1+\beta)R_E i_b \\ \Rightarrow \frac{v_b}{i_b} &= R_{ib} = r_\pi + (1+\beta)R_E = 2.6263 + 505 = 507.6263 \\ v_b &= V_\pi + v_o = i_b r_\pi + (1+\beta)R_E = 2.6263 + 505 = 507.6263 \\ \Rightarrow \frac{v_b}{i_b} &= R_{ib} = r_\pi + (1+\beta)R_E = 2.6263 + 505 = 507.6263 \\ v_b &= \frac{R_B \parallel R_{ib}}{R_S + R_B \parallel R_{ib}} v_S \\ \Rightarrow \frac{v_b}{v_s} &= \frac{R_B \parallel R_{ib}}{R_S + R_B \parallel R_{ib}} = \frac{234.0545}{0.7 + 234.0545} = 0.9970 \\ \frac{v_b}{v_o} &= \frac{v_b}{v_b} \times \frac{i_b}{v_o} \\ &= \frac{r_\pi + (1+\beta)R_E}{(1+\beta)R_E} \\ &= \frac{507.6263}{505} = 1.0052 \qquad ...(3) \\ \frac{v_o}{v_s} &= \frac{v_o}{i_b} \times \frac{i_b}{v_b} \times \frac{v_b}{v_s} \\ &= (1+\beta)R_E \times \frac{1}{R_{ib}} \times \frac{R_B \parallel R_{ib}}{R_S + R_B \parallel R_{ib}} \\ &= 505 \times \frac{1}{507.6263} \times 0.9970 = 0.9918 \qquad ...(4) \end{aligned}$$

If the peak-to-peak output voltage $v_{o(peak-peak)}$ is 4 V,

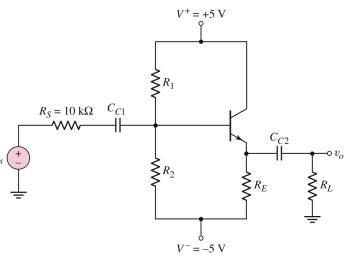
$$Eq.(3) \Rightarrow v_{b(peak-peak)} = 1.0052v_{o(peak-peak)} = 4.021 \text{ (V)}$$
$$Eq.(4) \Rightarrow v_{s(peak-peak)} = \frac{v_{o(peak-peak)}}{0.9918} = 4.033 \text{ (V)}$$

(c) If the load resistor $RL = 1 \text{ k}\Omega$ is added in parallel to RE, Eq. (4) must be modified accordingly:

$$\frac{v_o}{v_s} = \frac{(1+\beta)(R_E \parallel R_L)}{r_{\pi} + (1+\beta)(R_E \parallel R_L)} \left(\frac{R_B \parallel R_{ib}}{R_S + R_B \parallel R_{ib}}\right)$$
$$= \frac{(101)(0.8333)}{2.6263 + (101)(0.8333)} (0.9970) = 0.9668$$
$$\Rightarrow v_{o(peak-peak)} = 0.9668 v_{s(peak-peak)} = (0.9668)(4.033) = 3.90 \text{ (V)}$$

Therefore $v_{o(peak-peak)}$ becomes smaller due to the loading effect by R_L .

[3] An emitter-follower amplifier, with the configuration shown in Figure 3, is to be designed such that an audio signal given by $v_s = 5 \sin(3000t)$ V but with a source resistance of $R_s = 10 \Omega$ can drive a small speaker. Assume the supply voltages are $V_+ = +12$ V and $v_ V_- = -12$ V and $\beta = 50$. The load, representing the speaker, is $R_L = 12 \Omega$. The amplifier should be capable of delivering approximately 1 W of



average power to the load. What is the signal power gain of your amplifier?

Solution:

To deliver 1 W of average power to the load, the peak-to-peak output voltage should be:

$$\frac{v_{o(rms)}^2}{R_L} = \frac{v_{o(peak)}^2}{2R_L} = 1$$

$$\Rightarrow v_{o(peak)} = 4.899 \text{ (V)}$$

$$\Rightarrow i_{o(peak)} = \frac{4.899}{12} = 0.408 \text{ (A)}$$

$$\Rightarrow v_{o(peak-peak)} = 9.798 \text{ (V)}$$

The required voltage gain A_v is:

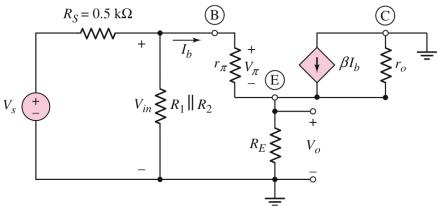
$$A_{v} = \frac{v_{o(peak)}}{v_{s(peak)}} = \frac{4.899}{5.0} = 0.9798$$

Choose I_{EQ} = 0.8 A and V_{CEQ} = 12 V,
$$R_{E} = \frac{V^{+} - V^{-} - V_{CEQ}}{I_{EQ}} = \frac{12 - (-12) - 12}{0.8} = 15 \ (\Omega)$$
$$R_{TH} = \frac{1}{10} (1 + \beta) R_{E} = \left(\frac{51}{10}\right) (15) = 76.5 \ (\Omega) \ (\text{for bias-stable circuit})$$
$$V_{TH} = V^{-} + I_{EQ} R_{E} + V_{BE(on)} + I_{BQ} R_{TH}$$
$$= -12 + (0.8) (15) + 0.7 + \left(\frac{0.8}{10}\right) (76.5) = 1.9 \ (V)$$

$$= \frac{R_1}{R_1 + R_2} \left(V^+ - V^- \right) + V^- = \frac{1}{R_1} \left(R_1 \parallel R_2 \right) \left(V^+ - V^- \right) + V^-$$

$$\Rightarrow R_1 = 132 \ (\Omega) \qquad R_2 = 182 \ (\Omega)$$

The small-signal ac equivalent circuit is given by:



Choosing $I_{EQ} = 0.5$ A gives:

$$I_{CQ} = \frac{\beta}{1+\beta} I_{EQ} = \left(\frac{50}{51}\right) (0.8) = 0.784 \text{ (A)}$$
$$r_{\pi} = \frac{\beta V_T}{I_{CQ}} = \frac{(50)(0.026)}{0.784} = 1.658 \text{ (}\Omega\text{)}$$

The small-signal voltage gain is taken from Q.2 with some modifications:

$$\frac{v_o}{v_s} = \frac{(1+\beta)(R_E \parallel R_L)}{r_{\pi} + (1+\beta)(R_E \parallel R_L)} \left(\frac{R_1 \parallel R_2 \parallel R_{ib}}{R_s + R_1 \parallel R_2 \parallel R_{ib}}\right)$$
$$= \frac{(51)(6.667)}{1.658 + (51)(6.667)} \left(\frac{62.5116}{10 + 62.5116}\right)$$
$$= 0.8579$$

Due to the presence of the source resistance R_S (loading effect) the required voltage gain of $A_v = 0.9798$ cannot be achieved. Note that $A_v = 0.9951$ if $R_S = 0$. Therefore the maximum achievable peak output voltage is:

$$\frac{v_{o(peak)}}{v_{s(peak)}} = 0.8579 \Longrightarrow v_{o(peak)} = 4.290 \text{ (V)}$$

Hence the output power delivered to the load R_L is:

$$P_L = \frac{v_{o(peak)}^2}{2R_L} = 0.767 \text{ (W)}$$

The input power delivered by the signal source v_s is:

$$P_{S} = v_{s(rms)} i_{s(rms)}$$

$$i_{s(rms)} = \frac{v_{s(rms)}}{R_{i}} = \frac{v_{s(rms)}}{R_{S} + R_{1} || R_{2} || R_{ib}} = \frac{5/\sqrt{2}}{10 + 62.5116} = 48.758 \text{ (mA)}$$

$$\Rightarrow P_{S} = v_{s(rms)} i_{s(rms)} = \left(\frac{5}{\sqrt{2}}\right) (48.758) = 172.386 \text{ (mW)}$$

Hence the signal power gain of the amplifier is:

$$G_{power} = \frac{P_L}{P_S} = \frac{0.767}{172.386 \times 10^{-3}} = 4.45$$